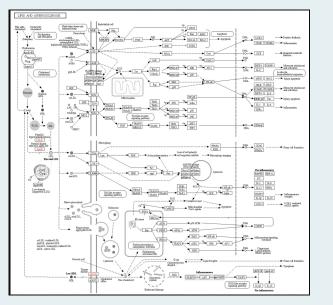
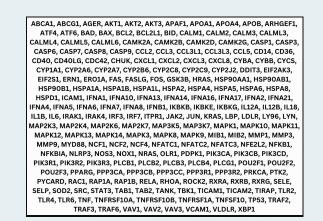

A NOVEL SYSTEMS BIOLOGY & BIOINFORMATICS APPROACH FOR IDENTIFYING **EVOLUTIONARY TRADE-OFFS AFFILIATIONS & CONTACT AUTHORS** (ATHEROGENESIS & ATHEROSCLEROSIS) ^a (UCLA) University of California, Los Angeles a.1 Kaitlyn Smolens, ¹ kaitlynsmolens@g.ucla.edu a. 2 B. Natterson-Horowitz, M.D.

BACKGROUND

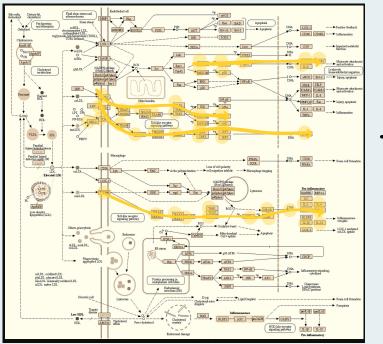

Vulnerability to atherosclerosis represents an evolutionary trade-off: balancing the liability associated with the pathology against the multiple biological benefits contained within the phenotype of vulnerability. Emerging bioinformatic platforms enable a pathway-level analysis of these evolutionary trade-offs. Here we present a novel systems biology approach using publicly available gene expression pathway platforms to depict the series of overlapping and interdependent physiological and pathophysiological processes which play central roles in both atherogenesis and critical physiologic functions.


METHODOLOGY

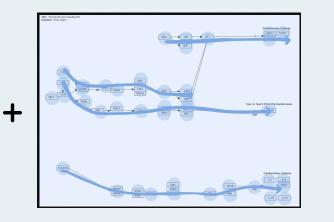
a) To identify the overlap between pathophysiological atherogenic pathways and physiological (biologically beneficial) pathways:

1. We utilized KEGG (Kyoto Encyclopedia of Genes and Genomes) to source genes that are key to several canonic atherosclerosis pathways.

2. Each gene from the pathway was compiled (215 total).

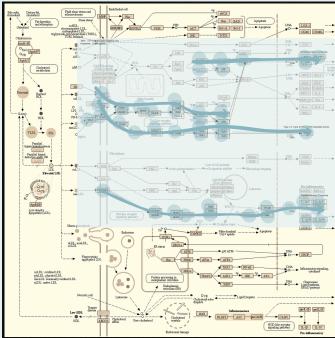

GENE ANALYTICS RESULT FOR: ATHEROSCLEROSIS PATHWAYS

Gene Set ANALYSIS	5					Help 👻	About
ANALYZED GENES:	215 🛆 NOTES (2)				e	2
ABCA1, ABCG1, AGER, a Send to VarElect Edit		AF1, APOA1, APOA4, A	POB, ARHGEF	1, ATF4, ATF6, BAD, BAX, BCL2, BCL2L1, BI), CALM1, CALM	12, CALM3, Show	All
BASED ON EXPRESS	ON	BASED ON FUNCTION					
ISSUES & CELLS (961)	DISEASES (3081)	PATHWAYS (694)	GO TERMS	(817) HPO PHENOTYPES (443) MGI	PHENOTYPES (3	358) COMPOU	JNDS (170)
FILTERS		DETAILED RE	SULTS				
SOURCES	(?	Dathwaye: 69	/ Matchi	ng Gene(s): 214	(b)	Enter filter tex	+
WikiPathways	244	Fatiways. 05	4, matori	ng oene(3). 214		Enter Inter tex	
Reactome	197		3		?	# Matched	
C PubChem	131	🕂 👻 🗸 Score	=	▶ Name		Genes (Total Genes)	Sources
🥏 GeneGo	109	 ☐ 166 	10	SuperPath: Toll-Like Receptor Signalin	a Pathways	70 (133)	iiiii RD
GenScript	105		10				GARDEN
PharmGKB	29			RD Inflammasome Activation Pathway	S	32 (52)	
RD R&D Systems	22			RD NOD-like Receptor Signaling Path	ways	51 (88)	
Sino Biological	16			RD Toll-Like receptor Signaling Pathw	ays	58 (81)	
Multiple selection			Toll-Like Receptors Pathway		40 (71)		
				Nanomaterial-induced inflammase	ome activation	3 (3)	
				TLR4 signaling and tolerance		15 (16)	
		166	.10	SuperPath: BAFF in B-Cell Signaling		41 (84)	0
		166	.10	SuperPath: IL-17 Family Signaling Path	ways	50 (108)	\$₽€
		166		SuperPath: NGF Pathway		39 (87)	H


b) To visualize the degree of overlap between pathophysiological atherogenic pathways and the top 3 physiological pathways:

- 1. We compared the gene sequences found in the pathophysiological atherogenic pathways with those found in the physiological pathways.
- 2. We then superimposed the overlapping physiological and pathophysiological pathways. For example:

ATHEROSCLEROSIS PATHWAY



TOLL-LIKE RECEPTOR SIGNALING PATHWAY

We replicated sections in the RnD Systems pathway from the GeneAnalytics result to enable overlap visualization

TOLL-LIKE RECEPTOR SIGNALING PATHWAY SUPERIMPOSED ONTO THE ATHEROSCLEROSIS PATHWAY

² natterson-horowitz@fas.harvard.edu

OBJECTIVES

We aimed to develop a method for identifying overlapping pathophysiological and physiological gene expression pathways for human disease. A criterion for our methodology was to make use of publicly available gene expression pathway platforms exclusively. With our results, we sought to create visualization techniques illustrating and emphasizing the evolutionary tradeoffs for human diseases. For demonstrating our methodology, we used the leading cause of death in our species, atherosclerosis.

3. We imported the compiled genes into Gene Analytics.

x . 🖻 🥝 RD

Gene Analytics provides a ranked list of physiological (biologically beneficial) pathways that overlap with the pathophysiological atherogenic pathways.

The top 3 physiological (biologically beneficial) pathways that maximally overlap with the pathophysiologic atherogenic pathways are the:

1. Immune Caspase-1 Activation Pathways

2. NOD-like Receptor Pathways **3. Toll-like Receptor Signaling Pathways**

Note: the top 3 physiologic pathways that overlap with pathophysiologic atherogenic pathways are heavily linked to immune physiology

LEGEND

Yellow Box: Pathophysiology Blue Box: Physiology Turquoise Circles: Overlapping Genes Turquoise Arrows: Convergent Pathways

QR CODE TO ANIMATED DECK

IMPLICATIONS & CONCLUSION

The proximate causes of atherosclerosis have been extensively studied and characterized since the Framingham Heart Study. While classic atherosclerosis risk factors, such as cholesterol, hypertension, and lifestyle (diet and sedentary behavior), play a significant role in determining susceptibility to atherosclerosis, our study focuses on exploring the often-overlooked vulnerability to atherogenesis from an evolutionary perspective. We present a methodology for exploring non-proximate (evolutionary) processes shaping vulnerability to atherosclerosis.

We developed a user-friendly methodology that could be easily used by physicians and medical students for identifying overlapping pathophysiologic and physiologic gene expression pathways, applicable to various human diseases. Our approach emphasizes clarity of visual depiction of these overlaps to drive home the following central concept in evolutionary medicine: Embedded within the biology of vulnerability to disease, are dense networks of interdependent and overlapping biologically beneficial pathways. These components of vulnerability have evolved over an evolutionary timescale. Recognizing their biological benefits enhances our understanding of evolutionary tradeoffs. Strengthening our knowledge of their functions and influence promises more informed development of strategies for treatment and prevention. Our method for identifying and visualizing these components of vulnerability offers a novel method for clarifying the nature of evolutionary tradeoffs underlying vulnerability to human pathology.

CITATIONS

BioTechne. (n.d.). Atherosclerosis Disease Progression. R&D Systems. https://www.rndsvstems.com/resources/nosters/atherosc disease-progression

BioTechne. (2012). Toll-like receptor signaling pathways. R&D Systems. https://www.rndsystems.com/pathways/toll-like-receptorsignaling-pathways?utm_source=genecards&utm_medium=referral&utm_campaign=product&utm_content=pathwa

GeneAnalytics: An Integrative Gene Set Analysis Tool for Next Generation Sequencing, RNAseg and Microarray Data (PMID: 26983021 Citations: 191) Ben-Ari Fuchs S, Lieder I, Stelzer G, Mazor Y, Buzhor E, Kaplan S, Bogoch Y, Plaschkes I, Shitrit A, Rappaport N, Kohn A, Edgar R, Shenhay L, Safran M, Lancet D, Guan-Golan Y, Warshawsky D, and Strichman R

Koenig, W., & Khuseyinova, N. (2007). Biomarkers of atherosclerotic plaque instability and rupture. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(1), 15-26. https://doi.org/10.1161/01.atv.0000251503.35795.4f

Lipid and Atherosclerosis. KEGG PATHWAY Database. (n.d.).

https://www.genome.jp/pathway/map05417+C02530#:~:text=Atherosclerosis%20is%20a%20chronic%20inflammatory,walls%20of%20art erial%20blood%20vessels

Martina Kutmon, Martijn P. van Iersel, Anwesha Bohler, Thomas Kelder, Nuno Nunes, Alexander R. Pico, Chris T. Evelo. (2015). PathVisio 3: An Extendable Pathway Analysis Toolbox. PLoS Comput Biol 11(2): e1004085 doi: 10.1371/journal.pcbi.1004085